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Abstract
Since the development of deep learning, image super-resolution (SR) has made great progress, and become the focus of 
academic research. Because high-level features are more informative for the reconstruction, most SR networks have a large 
number of layers and parameters, which restrict their application in resource-constrained devices. Recently, lightweight 
networks got a lot attention for their broad application prospect. To improve the performance of lightweight networks by 
informative high-level features, we introduce feedback mechanism into our method, which can feed back high-level features 
to refine low-level ones. In this paper, we propose a closed-loop feedback network with cross back-projection for lightweight 
image super-resolution (CCFN), which uses feedback mechanism in three manners. First, based on error feedback, we pro-
pose a cross back-projection feedback block (CFB). CFB uses error feedback to correct the features of multi-scale fusion,  
which also can be viewed as two cross-learning back-projection units. Second, CFB works in a self-feedback manner, which 
feeds back the output high-level features to refine the low-level ones of the input. Third, we propose a global feedback, 
which feeds back the degradation results of SR to LR, to guide the learning of mapping functions from LR to HR. Finally, 
we use attention-based model as the basic block in CFB, and since our method works in an iterative manner, recursive con-
catenation is more suitable than multi-reconstruction. The final experimental results show that our CCFN has a competitive 
performance with few parameters.
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1 Introduction

The single image super-resolution (SISR) aims to reconstruct 
high-resolution (HR) image from the low-resolution (LR) 
image, which is an ill-posed problem, for the LR image can 
be generated from an infinite number of HR images. Many 
methods [1–8] have been proposed to solve this problem.

SRCNN [2] proposed by Dong et al. introduced deep 
learning into image super-resolution for the first time. Then 
Dong et al. proposed FSRCNN [1], which learned LR fea-
tures and used deconvolution on the last layer to reduce the 
amount of calculation. Sub-pixel convolution was proposed 
by Shi et al. in ESPCN [7], which upscaled the LR features 
by a periodic shuffling operator at the end of the network.

To improve the performance of SR networks, deep net-
works were proposed. Many literatures [9, 10] have proved 
that, the deeper the networks, the better the expressive abil-
ity. However, deep networks have two drawbacks. One draw-
back is that deep networks are very difficult to train, for they 
are easy to cause gradient vanishing/exploding problems. 
To solve this problem, residual learning was well used in 
ResNet [11]. Residual learning is used to fuse the low-level 
features into high-level ones to enhance the gradient flow. 
Then EDSR [12], DenseNet [13] and SRResNet [5] were 
proposed based on residual learning. Another drawback 
of deep networks is that they have too many parameters, 
resulting in a lot of memory footprint. Therefore, recursive 
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convolutional networks [4, 14] were proposed, for they can 
reduce parameters of deep networks by parameter sharing 
between recursive blocks.

However, since innumrable HR images can be degraded 
to one LR image, the solution space for mapping functions 
of LR-HR is very large. The traditional networks are trained 
by paired LR-HR datasets and calculate the loss by the dif-
ference between SR and HR. Recently, DRN [15] introduced 
dual-regression scheme into SR, which calculated the primal 
loss and the dual-regression loss to constrain the space of 
possible mapping functions. The dual-regression scheme can 
directly learn LR images without the supervision of corre-
sponding HR images. Inspired by DRN [15], we propose a 
global feedback to guide the learning of mapping functions 
from LR to HR.

The methods mentioned above are all feedforward, the 
latter layers of which are just a nonlinear mapping of the 
outputs from previous layers. However, the high-level fea-
tures are more informative for the reconstruction, so the 
refinement of low-level features with high-level ones is very 
important. Many feedback networks [6, 16–18] were pro-
posed to solve this problem. Recently feedback mechanism 
was introduced into SR. DBPN [19] proposed error feedback 
in up- and down-projection units to realize self-correction. 
SRFBN [6] used feedback mechanism in a manner similar to 
recurrent neural network (RNN), which learned the recurrent 
block in a feedback manner.

Lightweight networks got a lot attention for their broad 
application prospect recently. All the lightweight methods 
make an effort to achieve a better performance with fewer 
parameters. Since high-level features are more informa-
tive for reconstruction, the refinement of low-level features 
with high-level ones is very important. Although feedback 
mechanism was introduced into SR, which has not been 
fully exploited in lightweight SR methods. Therefore, to 
further improve the performance of lightweight SR, feed-
back mechanism should be introduced into lightweight SR 
and fully utilized. In this paper, we propose a closed-loop 
feedback network with cross back-projection for lightweight 
image super-resolution (CCFN), which is shown in Fig. 1. 
SRFBN [6] is the most relevant work to our CCFN, which 

is a deep network with only self-feedback. We use feedback 
mechanism in three manners: error feedback, self-feedback 
and global feedback. Based on error feedback and inspired 
by multi-scale fusion proposed in HRNet [20], we propose a 
motivation that, the error feedback can be used to correct the 
features of multi-scale fusion, which also can be viewed as 
two cross-learning back-projection units. Therefore, a cross 
back-projection feedback block (CFB) is proposed, which 
can enhance the representation ability of multi-scale fusion 
and back-projection units. The feedback block CFB works 
in a self-feedback manner in CCFN, which can feed back 
high-level features from ouput to its input, so that the new 
ouputs are more informative for reconstruction. Then we 
propose a motivation that, a global feedback can feed back 
the degradation results of SR to LR to guide the learning of 
mapping functions of LR-HR. Then we use RCAB [21] as 
the basic block in CFB, which integrated channel attention 
into residual blocks. Channel attention module can extract 
the channel statistic to enhance network discriminative abil-
ity. At last, since our CCFN is a feedback network, which 
works in an iterative manner, the previous iterations are less 
informative for the reconstruction. Therefore, we propose a 
motivation that concatenation reconstruction is more suita-
ble for feedback networks than the multi-reconstruction used 
in existing feedback methods. With the help of the moti-
vations we proposed, our method acheives an outstanding 
performance as a lightweight network, as shown in Fig. 2.

In summary, the contributions of the CCFN we proposed 
are as follows:

– We propose a lightweight network based on feedback 
mechanism (CCFN), which uses feedback mechanism in 
three manners: self-feedback, error feedback and global 
feedback. Since high-level features are more informative 
for reconstruction, which is proved in deep networks, the 
refinement of low-level features with high-level ones by 
feedback mechanism is very important.

– We propose a cross back-projection feedback block 
(CFB), which uses error feedback to correct the features 
of multi-scale fusion. CFB also can be viewed as two 
cross-learning back-projection units, which can get useful 

Figure 1  Closed-loop feedback 
network with cross back-
projection for lightweight image 
super-resolution (CCFN). Blue 
arrows represent self-feedback. 
Red arrows represent the global 
feedback. Orange arrows repre-
sent bicubic upsampling.
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information from each other. The CFB we proposed has 
a better performance than the existing back-projection 
units and multi-scale fusion. (more details see Sect. 3.2).

– We propose a global feedback to better guide the learning 
of mapping functions from LR to HR, which feeds back the 
degradation results of SR to calculate feedback-regression 
loss with the primal LR. The feedback-regression loss can 
supervise the train of the network together with primal 
regression loss. Our global feedback can be used in all 
scales of SR networks directly, which can obtain a better 
mapping function but introduces very few parameters.

2  Related Work

2.1  Lightweight Networks

Lightweight networks have gotten a lot of attention in 
recent years, for they are appliable for embedded devices 
with resource-constrained. Dong et al. proposed SRCNN 
[2], which introduced deep learning into image SR. Then 
they proposed FSRCNN [1], which learned LR features 
and used deconvolution at the end to reduce calculations. 
VDSR [3] proposed by Jiwon Kim et al. had 20 layers, 
which took an interpolated LR image as input. Then Jiwon 

Kim et al. proposed DRCN [4], which introduced recursive 
convolution into image SR. Therefore, the networks can be 
very deep without adding new parameters, for they share 
the same weights among recursive convolutional layers. In 
DRRN [14], a recursive block contained several residual 
units, and recursive-supervision was proposed to improve 
the performance. LapSRN [22] reconstructed the final SR 
image progressively by multiple intermediate SR predic-
tions in the network. Based on residual learning and infor-
mation distillation block, IDN [23] achieved a competitive 
results with less layers. CARN [24] used cascading residual 
to improve the network performance. IMDN [25] proposed 
information multi-distillation and contrast-aware attention 
module (CCA) to achieve outstanding performance. In the 
year of 2020, LatticeNet [26] was proposed, in which lat-
tice block was used to expand the representation capabilities 
of the network significantly by the combination of residual 
blocks. Then SMSR [27] learned sparse masks to reduce the 
redundant computation of the network in the year of 2021.

The lightweight methods mentioned above are all feed-
forward. Since high-level features are more informative for 
reconstruction, which is proved in deep networks, to improve 
the performance of lightweight networks, we propose a 
motivation that, the refinement of low-level features with 
high-level ones by feedback is very important. Experimental 
results indicate that, with the help of feedback mechanism, 
our CCFN achieves a better performance than the light-
weight networks mentioned above.

2.2  Back‑projection

Most of the networks [1–3, 23, 25, 26] upscaled LR features 
at the beginning or end of the networks only once. [4, 14] 
upscaled the LR features at each iterarion. LapSRN [22] 
upscaled the LR features to HR features progressively. The 
LR features of these networks are up-sampled to HR features 
by direct or progressive upsampling process.

Back-projection can minimize the reconstruction error 
by iterative up- and down-sampling procedure, which was 
proposed in an early SR method [28] originally for multiple 
LR inputs. Then bilateral back-projection was proposed for 
single LR input in [29]. NLIBP [30] proposed a non-local 
iterative back-projection method for image enlargement. 
[31] proved that, back-projection refinement can improve 
the performance of learning-based SISR. Recently, DBPN 
[19] proposed up- and down-projection units, which were 
learned in an iterative procedure to guide the reconstruction, 
then the authors improved the reconstruction performance 
by dense skip connections.

The back-projection mentioned above worked in an inde-
pendent manner. Inspired by DBPN [19] and multi-scale fusion 
proposed in HRNet [20], we propose a motivation that the 

Figure 2  PSNR vs. number of parameters on Set5 dataset.
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cross-learning between back-projection units can further enhance 
their representation ability. Experimental results indicate that 
cross back-projection we proposed has a better performance than 
the independent projection units used in existing methods.

2.3  Feedback Mechanism

Most of the neural networks are feedforward networks [1, 2, 22, 
32–34]. Recursive networks [4, 14, 35] shared the same weights 
among recursive blocks in a feedforward manner. Residual net-
works [11–13, 36] fused differnt level information by sending 
shallow features to the latter layers, which were also feedforward 
networks. In feedforward networks, the inputs of latter layer are 
just a nonlinear mapping of the outputs from previous layers.

Feedback mechanism works in a way of top to down, feed-
ing back high-level features to previous layers, so that previ-
ous layers can get useful information from the following layers 
and refine low-level features. Feedback mechanism has been 
used in various computer vision methods [16–18, 37], which 
was first introduced into SR by DBPN [19]. In DBPN [19], 
error feedback was proposed in up- and down-projection units 
to realize self-correction. Then SRFBN [6] used feedback 
mechanism in a manner similar to RNN, which repalced the 
recurrent block with feedback block.

Although feedback mechanism was introduced into SR, 
which has not been fully exploited in lightweight SR meth-
ods. Since high-level features are more informative for recon-
struction, we propose a motivation that, the performace of 
lightweight SR networks can be further improved by making 
full use of feedback mechanism. We use error feedback and 
self-feedback manners in our CCFN. Furtherly, we propose 
a global feedback to guide the learning of mapping functions 
from LR to HR. Experimental results indicate that, all the 
feedback manners have a better performance than the cor-
respongding feedforward manners.

3  Our Method

In this section, the network architecture of CCFN is first 
described. Then CFB as the basic feedback block in CCFN 
is described in detail. At last, the global feedback together 
with loss function are described.

3.1  Network Structure

Since CFB works in a self-feedback manner, the CCFN can 
be unfolded to T iterations. As [6] do, we set iteration T = 4, 
so iteration t is ordered from 1 to 4. Different from SRFBN 
[6], we recursively concatenate the upsampling results at the 
end of each iteration and reconstruct SR images at the last 
iteration, as shown in Fig. 3, which is proven to improve the 
network performance efficiently.

The CCFN contains three parts: shallow feature extraction 
block (SFB), cross back-projection feedback block (CFB) and 
reconstruction block (RB). In the first part, SFB extracts shal-
low features, then the shallow features are passed to CFB. In 
the second part, CFB is a feedback block, so the output of CFB 
is fed back to itself in next iteration, and also passed to RB of 
the current iteration. Finally, in RB, the concatenation results 
are used to reconstruct SR image at the last iteration by adding 
bicubic upsampling results. Then the degradation of SR results 
is fed back to calculate the feedback-regression loss.

We define Lin is the output of SFB, as well as one of the 
inputs of CFB, which can be obtained by:

where fSFB is the operations of SFB, which consists of a 
conv(3,128) and a conv(128,32) to extract the shallow LR 
features.

In the first iteration, CFB takes Lin as input. While in the 
other iterations, CFB takes Lin and the output of CFB from last 

(1)Lin = fSFB(LR),

Figure 3  The unfolded CCFN.
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iteration as inputs, which will be covered in detail in Sect. 3.2. 
Therefore, Lt

out
 as the output of CFB in the t-th iteration, which 

can be obtained by:

where fCFB is the operations of CFB.
In RB, we use deconvolutional layer on the output of CFB, 

and then concatenate them recursively to reconstruct SR image 
at the last iteration. We define the results after the deconvolu-
tional upsampling in the t-th iteration as follows:

Because of the recursive concatenation and global residual 
learning, the SR image can be obtained by:

where fcm is the convolutional layer used to compress feature 
channels, and fBC is the bicubic upsampling operation. [] is 
the concatenation operation.

Because of the global feedback, we generate LR′ by down-
sampling operator fdown , which consists of conv(3,32) and 
conv(32,3). LR′ is used to calculate the feedback-regression 
loss together with the primal LR, which will be covered in 
detail in Sect. 3.3.

3.2  Cross Back‑projection Feedback Block (CFB)

CFB is the basic feedback block of CCFN, which works in a 
self-feedback manner. CFB has two inputs, the output of SFB 
and the output of CFB from last iteration. The output of CFB 

(2)Lt
out

=

{
fCFB(Lin)

fCFB([Lin, L
t−1
out

])

t = 1

t ≥ 2

}

,

(3)Ht
rb
= fup(L

t
out
).

(4)SR = fcm([[[H
1

rb
,H2

rb
],H3

rb
],H4

rb
]) + fBC(LR),

(5)LR� = fdown(SR),

is passed to next part of the current iteration, and fed back to 
itself in next iteration.

Inspired by HRNet [20] and DBPN [19], we propose cross 
back-projection, as shown in Fig. 4. The first line is HR feature 
flow, and the second line is LR feature flow. We cross connect the 
two feature flows by upsampling and downsampling operations 
to exchange the HR and LR information densely. Different from 
the multi-scale fusion proposed in HRNet [20], we use error feed-
back mechanism at the end of the two feaure flows. Therefore, 
two cross-learning feature flows form two cross back-projection 
units. The green arrows are connected to form a up-projection 
unit. The orange arrows are connected to form a down-projection 
unit. The black arrows connect the up-projection unit and down-
projection unit to exchange informations of the two units.

To further improve the performance of our cross back-
projection, we use residual channel attention block (RCAB) 
[21] as each basic block, which integrated channel attention 
into residual blocks. Attention module can extract the chan-
nel statistic to enhance network discriminative ability, which 
improved the performance of CFB greatly.

In CFB of the t-th iteration, we define the HR features in 
HR flow are Ht

0
 , Ht

1
 , Ht

2
 , Ht

3
 , respectively, and define the LR 

features in LR flow are Lt
0
 , Lt

1
 , Lt

2
 , Lt

3
 , respectively. The process 

of the CFB is as follows:

(6)
{

Lt
0
= fRCAB([Lin, L

t−1
out

])

Ht
0
= fup(L

t
0
)

}

,

(7)
{

Lt
1
= fRCAB(L

t
0
)

Ht
1
= fRCAB(H

t
0
)

}

,

(8)
{

Lt
2
= fRCAB([L

t
1
, fdown(H

t
1
)])

Ht
2
= fRCAB([H

t
1
, fup(L

t
1
)])

}

,

Figure 4  Cross back-projection 
feedback block (CFB). The 
green arrows are connected to 
form a up-projection unit. The 
orange arrows are connected to 
form a down-projection unit. 
The black arrows connect the 
up-projection unit and down-
projection unit to exchange 
information of the two units.
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where fRCAB is the operation of the basic block in CFB. fup 
and fdown are the deconvolutional upsampling operation and 
convolutional downsampling operation, respectively.

Then we use Lt
1
 and Lt

3
 to correct Ht

2
 , Ht

1
 and Ht

3
 to correct 

Lt
2
:

Finally, we downscale the output of up-projection unit, 
and fuse it with the output of down-projection unit by the 
final basic block. So the output of CFB can be obtained by:

3.3  Loss Function with Global Feedback

We propose a global feedback in our network, which 
feeds back the degradation results of SR to LR. LR′ as the 
degraded result of SR is compared with the primal LR to 
constrain the space of possible solutions for mapping func-
tions. So the loss function contains two parts: the primal 
regression loss which can be calculated by SR and HR, the 
feedback-regression loss which can be calculated by LR′ and 
LR. So the loss function is as follows:

where � controls the weight of feedback-regression loss. L1 
is the L1 loss function.

4  Experimental Details

4.1  Datasets

DIV2k dataset [38] contains 800 images with 2K resolution. 
We expand the number to 8000 by augmentation (rotation 
and cropping), and downscale them by bicubic downsam-
pling to generate LR images to train our CCFN.

We test our network on five benchmark datasets: Set5, 
Set14, BSD100, Urban100 and Manga109 datasets. Set5 con-
tains 5 test images, namely babies, birds, butterflies, heads and 
women. Set14 contains 14 test images, which are more diverse 
and larger than images in Set5. BSD100 contains 100 images, 
which covers a wide variety of real-life scenes. Urban100 
consists of 100 urban environmental images with high self-
similarity. Manga109 contains 109 Japanese comics, which is 
the latest test dataset. At last, we test our network on RealSR 

(9)
{

Lt
3
= fRCAB([L

t
2
, fdown(H

t
2
)])

Ht
3
= fRCAB([H

t
2
, fup(L

t
2
)])

}

,

(10)
{

Lt = Lt
2
+ fdown(H

t
3
− Ht

1
)

Ht = Ht
2
+ fup(L

t
3
− Lt

1
)

}

.

(11)
{
Lt
out

= fRCAB([L
t, Lt

1
, Lt

3
, fdown(H

t)])
}
.

(12)Loss = L1(SR,HR) + �L1(LR
�
,LR),

[39], which captured 234 scenes by digital cameras to generate 
595 real-world HR-LR image pairs for different scales.

4.2  Implementation Details

We use adam optimizer, which was proposed by Jimmy Ba 
et al. in Adam [40], and was recommended as the default 
algorithm to use. Learning rate controls the updating speed 
of parameters of mapping functions to find the optimal solu-
tion. Therefore, we set the initial lr = 0.0005 for fast network 
convergence, and halve it per 200 epoches with total 1000 
epoches to find the optimal solution. We set the kernel size of 
convolutional layers in our CCFN is 3 × 3, except for the 1 × 
1 convolutional layers for compressing feature channels. Batch 
size is set to 16. The training of our network is supervised by 
L1 loss, which is more robust against outliers and guide the 
loss to achieve a better local minimum. The L1 function is 
shown in Eq. (13), which calculates the difference between 
the reconstructed image and primal real image.

where Î is the reconstructed image, and I is the primal real 
image.

At last, we calculate the signal-to-noise ratio (PSNR) and 
structural similarity index (SSIM) values to measure the recon-
struction quality of CCFN, which are shown in Eqs. (14) and 
(15). All the results are obtained on GPU 3060 using Pytorch 
framework.

where MSE is the mean square error of I and Î , MAX is the 
maximum possible pixel value.

where �I and �2

I
 are the mean and variance of I. 𝜎IÎ is the 

covariance between Î and I. k1 and k2 are constant terms.

5  Experimental Results

To validate our motivation that feedback mechanism can improve 
the performance of SR networks, we compare our self-feedback, 
error feedback and global feedback with the existing feedforward 
methods, as shown in Sects. 5.1, 5.2 and 5.3. To validate our 
motivation that cross back-projection has a better performance 
than the existing independent back-projeciton, we use independ-
ent back-projeciton on our method, as shown in Sect. 5.4. Then, 

(13)L1
(
I, Î

)
=

n∑

i

|||
Ii − Îi

|||
,

(14)PSNR = 10 × log10

(
MAX2

I

MSE

)

,

(15)SSIM
(
I, Î

)
=

2𝜇I𝜇Î + k1

𝜇2

I
+ 𝜇2

Î
+ k1

×
𝜎IÎ + k2

𝜎2

I
+ 𝜎2

Î
+ k2

,
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to validate our motivation that residual channel attention block as 
the basic block can improve the performance of CFB, we use the 
regular convolution used in existing mehtods instead, as shown 
in Sect. 5.5. At last, to validate our motivation that recursive con-
catenation is more suitable for feedback networks than multi-
reconstruction, we use the existing multi-reconstruction on our 
method, as shown in Sect. 5.6. All the motivations we proposed 
improve the methodologies proposed in existing methods. In 
Sect. 5.7, we compare the performance of our method with the 
state-of-the-art lightweight methods on five widely used bench-
mark datasets and real-world dataset RealSR, our method has a 
better performance with fewer parameters.

5.1  Effect of Global Feedback

We propose a global feedback to feed back the degrada-
tion of SR results back to LR, which is used to calculate 
feedback-regression loss with the primal LR. Therefore, 
the global feedback can guide the learning of mapping 

functions from LR to HR. In Eq. (12), � controls the weight 
of feedback-regression loss. We set � = 0 to prove the con-
tribution of global feedback to our method. Then we change 
the value of � from 0.01 to 1 to get an appropriate weight 
value for feedback-regression loss. From the results shown 
in Fig. 5, we can find that, the global feedback is beneficial 
to our CCFN, and the network has a best performance when 
� = 0.1 . Therefore, we set � = 0.1 in the other experiments.

5.2  Effectiveness of Self‑feedback

CFB works in a self-feedback manner, which feeds back the 
output to its input. To prove the effectiveness of self-feedback, 
we let CFB work in a feedforward manner, as shown in Fig. 6. 
Since CFB works in a feedforward manner, the feedback 
architecture becomes a recursive network, which is named 
CCFN-RNN. To make a fair comparison, CFB as a recursive 
block is applied 4 times. To avoid the problem of gradient 
vanishing/exploding, we use residual learning to concat the 
outputs of recursive blocks. The comparison results are shown 
in Table 1. We can find that, self-feedback manner has a better 
performance than the existing feedforward manner.

5.3  Effectiveness of Error Feedback

In CFB, we use error feedback at the end of multi-scale fusion, 
so the projection errors are used to correct the features in early 
layers. To prove the effectiveness of error feedback, we replace 
cross back-projection in CCFN with the multi-scale fusion 
proposed in HRNet [20], which is named CCFN-HRNet, as 
shown in Fig. 7. The comparison results are shown in Table 2. 

Figure 5  Effect of global feedback.

Table 1  Comparison of self-
feedback and feedforward 
recursive manner.

Methods Scale Params Set5 Set14 BSD100 Urban100 Manga109
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

CCFN × 3 612K 34.55/0.9281 30.41/0.8435 29.15/0.8065 28.40/0.8572 33.80/0.9460
CCFN-RNN 613K 34.39/0.9271 30.34/0.8422 29.09/0.8048 28.17/0.8531 33.49/0.9440

Figure 6  The architecture of 
CCFN-RNN.
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We can find that, our cross back-projection has a better perfor-
mance than cross-learning.

5.4  Comparison of our Cross Back‑projection 
and Independent Back‑projection

We propose a cross back-projection feedback block (CFB), 
in which the two back-projection units are cross-learned. 

Therefore, the two units can get useful information from 
each other to enhance the representation ability of features. 
To prove the effectiveness of cross back-projection, we 
replace cross back-projection in CCFN with independent up- 
and down-projection units proposed in DBPN [19], which is 
named CCFN-DBPN, as shown in Fig. 8. The comparison 
results are shown in Table 3.

Figure 7  The basic block of 
CCFN-HRNet.

Figure 8  The basic block of 
CCFN-DBPN.

Table 2  Comparison of our 
cross back-projection and multi-
scale fusion.

Methods Scale Params Set5 Set14 BSD100 Urban100 Manga109
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

CCFN × 3 612K 34.55/0.9281 30.41/0.8435 29.15/0.8065 28.40/0.8572 33.80/0.9460
CCFN-HRNet 656K 34.52/0.9277 30.42/0.8440 29.13/0.8064 28.40/0.8574 33.77/0.9457

Table 3  Comparison of our 
cross back-projection and 
independent back-projection.

Methods Scale Params Set5 Set14 BSD100 Urban100 Manga109
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

CCFN × 3 612K 34.55/0.9281 30.41/0.8435 29.15/0.8065 28.40/0.8572 33.80/0.9460
CCFN-DBPN 609K 34.49/0.9279 30.40/0.8435 29.13/0.8063 28.42/0.8575 33.77/0.9458
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5.5  Effectiveness of the Residual Channel Attention 
Block

In CFB, we use RCAB [21] as the basic block, which inte-
grated channel attention into residual block. Channel atten-
tion module can extract the channel statistic to enhance 

the discriminative ability of the network. To prove the 
effectiveness of the basic block, we replace it with regu-
lar convolution used in current methods (such as HRNet 
[20], DBPN [19], SRFBN [6] and so on), which is named 
CCFN-Conv, as shown in Fig. 9. The comparison results 
are shown in Table 4. From the comparison results, we can 

Figure 9  The basic block in 
CCFN-Conv.

Figure 10  The architecture of 
CCFN-multi.

Table 4  Comparison of the 
residual channel attention block 
and regular convolution as the 
basic block of CFB.

Methods Scale Params Set5 Set14 BSD100 Urban100 Manga109
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

CCFN × 3 612K 34.55/0.9281 30.41/0.8435 29.15/0.8065 28.40/0.8572 33.80/0.9460
CCFN-Conv 548K 34.42/0.9272 30.38/0.8430 29.10/0.8051 28.16/0.8522 33.49/0.9442

Table 5  Comparison of multi-
reconstruction and our recursive 
concatenation reconstruction.

Methods Scale Params Set5 Set14 BSD100 Urban100 Manga109
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

CCFN × 3 612k 34.55/0.9281 30.41/0.8435 29.15/0.8065 28.40/0.8572 33.80/0.9460
CCFN-multi 613k 34.42/0.9273 30.38/0.8427 29.10/0.8051 28.29/0.8550 33.68/0.9447
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Table 6  Comparison of the average PSNRs/SSIMs for scale factors of × 2, × 3 and × 4 on the Set5, Set14, BSD100, Urban100, and Manga109 
datasets. The best and the second-best results are highlighted in red and blue, respectively.

Methods Scale Params Set5 Set14 BSD100 Urban100 Manga109
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

Bicubic × 2 - 33.66/0.9299 30.24/0.8688 29.56/0.8431 26.88/0.8403 30.80/0.9339
SRCNN [2] 8K 36.66/0.9542 32.45/0.9067 31.36/0.8879 29.50/0.8946 35.60/0.9663
FSRCN [1] 13K 37.00/0.9558 32.63/0.9088 31.53/0.8920 29.88/0.9020 36.67/0.9710
VDSR [3] 666K 37.53/0.9587 33.03/0.9124 31.90/0.8960 30.76/0.9140 37.22/0.9750
DRCN [4] 1774K 37.63/0.9588 33.04/0.9118 31.85/0.8942 30.75/0.9133 37.55/0.9732
LapSRN [22] 251K 37.52/0.9591 32.99/0.9124 31.80/0.8952 30.41/0.9103 37.27/0.9740
DRRN [14] 298K 37.74/0.9591 33.23/0.9136 32.05/0.8973 31.23/0.9188 37.88/0.9749
MemNet [41] 678K 37.78/0.9597 33.28/0.9142 32.08/0.8978 31.31/0.9195 37.72/0.9740
SRFBN-S [6] 282K 37.78/0.9597 33.35/0.9156 32.00/0.8970 31.41/0.9207 38.06/0.9757
IDN [23] 553K 37.83/0.9600 33.30/0.9148 32.08/0.8985 31.27/0.9196 38.01/0.9749
EDSR-baseline [12] 1370K 37.99/0.9604 33.57/0.9175 32.16/0.8994 31.98/0.9272 38.54/0.9769
SRMDNF [42] 1511K 37.79/0.9601 33.32/0.9159 32.05/0.8985 31.33/0.9204 38.07/0.9761
CARN [24] 1592K 37.76/0.9590 33.52/0.9166 32.09/0.8978 31.92/0.9256 38.36/0.9765
IMDN [25] 694K 38.00/0.9605 33.63/0.9177 32.19/0.8996 32.17/0.9283 38.88/0.9774
LatticeNet [26] 756K 38.15/0.9610 33.78/0.9193 32.25/0.9005 32.43/0.9302 -/-
SMSR [27] 985K 38.00/0.9601 33.64/0.9179 32.17/0.8990 32.19/0.9284 38.76/0.9771
CCFN(ours) 491K 38.00/0.9606 33.62/0.9186 32.16/0.8995 32.21/0.9289 38.60/0.9770
Bicubic × 3 - 30.39/0.8682 27.55/0.7742 27.21/0.7385 24.46/0.7349 26.95/0.8556
SRCNN [2] 8K 32.75/0.9090 29.30/0.8215 28.41/0.7863 26.24/0.7989 30.48/0.9117
FSRCN [1] 13K 33.18/0.9140 29.37/0.8240 28.53/0.7910 26.43/0.8080 31.10/0.9210
VDSR [3] 666K 33.66/0.9213 29.77/0.8314 28.82/0.7976 27.14/0.8279 32.01/0.9340
DRCN [4] 1774K 33.82/0.9226 29.76/0.8311 28.80/0.7963 27.15/0.8276 32.24/0.9343
LapSRN [22] 502K 33.81/0.9220 29.79/0.8325 28.82/0.7980 27.07/0.8275 32.21/0.9350
DRRN [14] 298K 34.03/0.9244 29.96/0.8349 28.95/0.8004 27.53/0.8378 32.71/0.9379
MemNet [41] 678K 34.09/0.9248 30.00/0.8350 28.96/0.8001 27.56/0.8376 32.51/0.9369
SRFBN-S [6] 375K 34.20/0.9255 30.10/0.8372 28.96/0.8010 27.66/0.8415 33.02/0.9404
IDN [23] 553K 34.11/0.9253 29.99/0.8354 28.95/0.8013 27.42/0.8359 32.71/0.9381
EDSR-baseline [12] 1555K 34.37/0.9270 30.28/0.8417 29.09/0.8052 28.15/0.8527 33.45/0.9439
SRMDNF [42] 1528K 34.12/0.9254 30.04/0.8382 28.97/0.8025 27.57/0.8398 33.00/0.9403
CARN [24] 1592K 34.29/0.9255 30.29/0.8407 29.06/0.8034 28.06/0.8493 33.50/0.9440
IMDN [25] 703K 34.36/0.9270 30.32/0.8417 29.09/0.8046 28.17/0.8519 33.61/0.9445
LatticeNet [26] 765K 34.53/0.9281 30.39/0.8424 29.15/0.8059 28.33/0.8538 -/-
SMSR [27] 993K 34.40/0.9270 30.33/0.8412 29.10/0.8050 28.25/0.8536 33.68/0.9445
CCFN(ours) 612K 34.55/0.9281 30.41/0.8435 29.15/0.8065 28.40/0.8572 33.80/0.9460
Bicubic × 4 - 28.42/0.8104 26.00/0.7027 25.96/0.6675 23.14/0.6577 24.89/0.7866
SRCNN [2] 8K 30.48/0.8628 27.50/0.7513 26.90/0.7101 24.52/0.7221 27.58/0.8555
FSRCN [1] 13K 30.72/0.8660 27.61/0.7550 26.98/0.7150 24.62/0.7280 27.90/0.8610
VDSR [3] 666K 31.35/0.8838 28.01/0.7674 27.29/0.7251 25.18/0.7524 28.83/0.8870
DRCN [4] 1774K 31.53/0.8854 28.02/0.7670 27.23/0.7233 25.14/0.7510 28.93/0.8854
LapSRN [22] 502K 31.54/0.8852 28.09/0.7700 27.32/0.7275 25.21/0.7562 29.09/0.8900
DRRN [14] 298K 31.68/0.8888 28.21/0.7720 27.38/0.7284 25.44/0.7638 29.45/0.8946
MemNet [41] 678K 31.74/0.8893 28.26/0.7723 27.40/0.7281 25.50/0.7630 29.42/0.8942
SRFBN-S [6] 483K 31.98/0.8923 28.45/0.7779 27.44/0.7313 25.71/0.7719 29.91/0.9008
IDN [23] 553K 31.82/0.8903 28.25/0.7730 27.41/0.7297 25.41/0.7632 29.41/0.8942
EDSR-baseline [12] 1518K 32.09/0.8938 28.58/0.7813 27.57/0.7357 26.04/0.7849 30.35/0.9067
SRMDNF [42] 1552K 31.96/0.8925 28.35/0.7787 27.49/0.7337 25.68/0.7731 30.09/0.9024
CARN [24] 1592K 32.13/0.8937 28.60/0.7806 27.58/0.7349 26.07/0.7837 30.47/0.9084
IMDN [25] 715K 32.21/0.8948 28.58/0.7811 27.56/0.7353 26.04/0.7838 30.45/0.9075
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Figure 11  Visual comparisons 
of our CCFN with other SR 
methods on Set14, BSD100 and 
Urban100 datasets.

Table 6  (continued)

Methods Scale Params Set5 Set14 BSD100 Urban100 Manga109
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

LatticeNet [26] 777K 32.30/0.8962 28.68/0.7830 27.62/0.7367 26.25/0.7873 -/-
SMSR [27] 1006K 32.12/0.8932 28.55/0.7808 27.55/0.7351 26.11/0.7868 30.54/0.9085
CCFN(ours) 752K 32.34/0.8964 28.72/0.7847 27.63/0.7381 26.28/0.7919 30.72/0.9112
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find that, residual channel attention block can improve the 
performance of our method significantly.

5.6  Comparison of Recursive Concatenation 
and the Existing Multi‑reconstruction

In most of the existing iterative SR methods (such as SRFBN 
[6], DRCN [4]), SR image is reconstructed at each iteration. 
Since our CCFN is a feedback network, which works in an 
iterative manner to guide LR images to recover better SR 
images, the previous iterations are less informative for the 
reconstruction. Therefore, we use concatenation methods to 
replace the multi-reconstruction methods used in existing 
feedback methods, and reconstruct SR image at the last itera-
tion (see Fig. 3). To validate this motivation, we use multi-
reconstruction on our network, which is named CCFN-multi, 
as shown in Fig. 10, and the comparison results are shown 
in Table 5. From the results, we can find that, our concat-
enation method is more suitable for feedback networks than 
the multi-reconstruction method used in existing methods.

5.7  Comparison with the State‑of‑the‑art Methods

As a lightweight network, we compare our method with other 
lightweight state-of-the-art methods on classic simulated 
datasets Set5, Set 14, BSD100, Urban100 and Manga109. 
Other lightweight state-of-the-art methods are SRCNN 
[2], FSRCNN [1], VDSR [3], DRCN [4], LapSRN [22], 
DRRN [14], MemNet [41], IDN [23], EDSR-baseline [12], 
SRMDNF [42], CARN [24], IMDN [25], LatticeNet [26] 

proposed in 2020, and SMSR [27] proposed in 2021. We 
compare the PSNR and SSIM values, and the comparison 
results are shown in Table 6. We can find that our CCFN 
has less parameters, but better performance than other state-
of-the-art lightweight networks with the scale factors of ×3 
and ×4. When the scale factor is ×2, our method takes sec-
ond place, but with many fewer parameters. Therefore, our 
method achieves an outstanding performance compared to 
the state-of-the-art methods.

The visual comparisons of the SR results on ×4 are shown 
in Fig. 11. From the comparison results, we can find that our 
method recovers the finer textures better than the others. 
All the comparison results prove the effectiveness of our 
method.

Furtherly, we test our method by the real-world datasets 
RealSR [39], which is paired real-world images captured 
by digital cameras with different focal length. The visual 
comparisons are shown in Fig. 12, we can find that, our 
method still has a better performance than other methods 
on real-world image reconstruction.

6  Conclusion

In this paper, we propose a closed-loop feedback network with 
cross back-projection for lightweight image super-resolution 
(CCFN). The CCFN is a lightweight SR network, which uses 
feedback mechanism in three manners: error feedback, self-
feedback and global feedback. First, based on error feedback 
and multi-scale fusion, we propose a cross back-projetion 

Figure 12  Visual compari-
sons of our CCFN with other 
SR methods on RealSR [39] 
datasets.
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feedback block (CFB). In CFB, we use error feedback to 
correct the features of multi-scale fusion, which also can be 
viewed as two cross-learning back-projection units. The cross 
back-projetion has a better performance than independent 
back-projection units and multi-scale fusion. Second, CFB 
works in a self-feedback manner, which feeds back the high-
level features from output to refine the shallow ones as input. 
Third, we propose a global feedback to guide the learning of 
mapping functions from LR to HR by feeding back the deg-
radation results of SR to LR. We use attention-based model 
as the basic block in CFB, which improved the discrimina-
tive ability of the network. Finally, since our feedback net-
work works in an iterative manner and high-level features are 
more informative for reconstruction, recursive concatenation 
is more suitable than the multi-reconstruction used in exist-
ing literatures. All the methodologies we proposed are proven 
to improve the network performance. Further experimental 
results show that, the CCFN we proposed has an outstanding 
performance with few parameters. Our CCFN contains only 
one self-feedback block. We conjecture that complex feedback 
networks with double or more self-feedback blocks may have 
a better performance, the self-feedback blocks in which can 
work in a synchronous or asynchronous feedback manners. 
We will try more later.
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